ISOLANTI TERMICI

THERMAK

PANNELLI ISOLANTI ACCOPPIATI A MEMBRANA BITUMINOSA

Panel PIR

PANEL PIR è un sistema termoisolante in pannelli, accostati ed accoppiati a caldo su una membrana bituminosa impermeabilizzante.

Su richiesta è disponibile una speciale cimosa per la sigillatura delle sovrapposizioni, di larghezza 8 cm su versioni poliestere e 5 cm su versioni velovetro, composta da una striscia autoadesiva protetta da polietilene siliconato.

La sigillatura delle sovrapposizioni laterali avviene sempre per autoadesione mentre le sovrapposizioni di testa o comunque sull'ardesia, vanno sigillate con l'aiuto del mastice bituminoso PRATIKO MASTIC oppure, quando è possibile, si possono saldare ad aria calda.

Questa speciale cimosa permette un'applicazione veloce e in sicurezza (senza utilizzo di fiamma).

I pannelli PANEL PIR sono indicati per l'isolamento e l'impermeabilizzazione delle coperture in genere, con la grande convenienza di utilizzare un unico prodotto; uniscono infatti l'elevatissima capacità termoisolante del poliuretano all'impermeabilità della membrana bituminosa. PANEL PIR sono realizzati con schiuma rigida polyiso a celle chiuse, protetti con un rivestimento gas impermeabile multistrato A-Cell[®].

Settore di applicazione

I pannelli PANEL PIR si adattano a qualsiasi tipo di copertura: piana, in pendenza e curva.

Sono veloci da applicare ed una volta posati, la copertura è già impermeabilizzata, grazie alla cimosa di sormonto. Terminata la posa dei pannelli PANEL PIR, possiamo applicare una seconda membrana impermeabilizzante, oppure il manto di copertura definitivo.

Posa in opera

PANEL PIR va ancorato a seconda della natura e della pendenza del piano di posa e delle condizioni climatiche locali (zone ventose, climi rigidi ecc.) con adeguati fissaggi meccanici, con idonei sistemi di incollaggio o con l'utilizzo di appropriate membrane bugnate.

PANEL PIR presenta un'elevata resistenza alle sollecitazioni meccaniche associata ad un elevatissmo isolamento termoacustico; la componente bituminosa del sistema ha esclusivamente funzione di protezione dell'elemento coibente.

La posa del successivo manto di tenuta, andrà effettuata in totale aderenza e a cavaliere, sulla membrana sottostante.

CARATTERISTICHE TECNICHE MEMBRANA	UNITÀ DI MISURA	NORMA	Р	Р	PA	PA	PA	٧	٧	TOLLERANZA
TIPO ARMATURA			Poliestere filo continuo			Velovetro				
FINITURA FACCIA SUPERIORE			Film PE Ardesia*			Film PE				
FINITURA FACCIA INFERIORE			Film PE				.			
SPESSORE	mm	EN 1849-1	3	4	<u> </u>			2	3	±5%
MASSA AREICA	kg/m²	EN 1849-1			3,5	4,0	4,5			±10%
FLESSIBILITÀ A FREDDO	°C	EN 1109	-10							
STABILITÀ FORMA A CALDO	°C	EN 1110	120							
STABILITÀ FORMA A CALDO DOPO INVECCHIAMENTO	°C	EN 1296		110		11	10			-10°C
TRAZIONE GIUNTI L / T	N / 5 cm	EN 12317-1	300	/200						±20%
CARICO A ROTTURA L / T	N / 5 cm	EN 12311-1	400/300					300	/200	±20%
ALLUNGAMENTO A ROTTURA L / T	%	EN 12311-1	35/35					2	/2	±15 / ±2
RESISTENZA A LACERAZIONE L / T	N	EN 12310-1	130/130					70	/70	±30%
STABILITÀ DIMENSIONALE	%	EN 1107-1	-0,3				N	PD		
PERDITA ARDESIA	%	EN 12039	30							
RESISTENZA AL PUNZONAMENTO STATICO	kg	EN 12730	1	0						
RESISTENZA AL PUNZONAMENTO DINAMICO	mm	EN 12691	79	00						
RESISTENZA AL FUOCO		EN 13501-5	F ROOF							
REAZIONE AL FUOCO		EN 13501-1	F							
CARICO A ROTTURA DOPO INVECCHIAMENTO L / T	N / 5 cm	EN 1296				NPD				±20%
IMPERMEABILITÀ DOPO INVECCHIAMENTO ARTIFICIALE	kPa	EN 1296	60							
IMPERMEABILITÀ ALL'ACQUA	kPa	EN 1928	60							

^{*} I prodotti autoprotetti con scaglie di ardesia potrebbero subire, a causa del tempo di stoccaggio, variazioni di tonalità del colore. L'esposizione agli agenti atmosferici, dopo l'applicazione, tenderà ad uniformare il colore dopo qualche mese. Tale variazione di tonalità del colore non può, quindi, essere oggetto di contestazione e/o reclamo, in quanto trattasi di un fenomeno naturale che lo stesso produttore di ardesia non è in grado di garantire.

NPD = Nessuna Performance Dichiarata in accordo alla direttiva EU sui prodotti da Costruzione.

ISOLANTI TERMICI

www.thermak.it

Dati tecnici PUR

PANNELLI ISOLANTI ACCOPPIATI A MEMBRANA BITUMINOSA

CARATTERISTICHE	U.M.	PIR
DIMENSIONI PANNELLO	m	1,00 x 1,20
SPESSORI DISPONIBILI	mm	40
	mm	50
	mm	60
	mm	80
	mm	100
	mm	120

CARATTERISTICHE	SIMBOLO U.M.		NORMA					
		40	50	60	80	100	120	
Densità	kg/m³							
Conduttività termica dichiarata	λ _D (W/mk)	0,027 0,026					026	EN 13165
Resistenza termica dichiarata $R_D = d/\lambda_D$	R_D (m ² K/W)	1,48	1,85	2,22	3,15	3,70	4,44	EN 12667
Stabilità dimensionale (+70±2)°C E (90±5)% U.R. per (48±1) h	%	≤2 variazione lineare ≤6 variazione sullo spessore						EN 1604
Resistenza a compressione al 10% di deformazione	kPa	≥ 150						EN 826
Resistenza a compressione dopo 50 anni con schiacciamento ≤2%	kPa	≥ 25						EN 1606
Assorbimento d'acqua per immersione totale a lungo periodo	Vol. %	≤ 2						EN 12087
Fattore di resistenza diffusione del vapore acqueo	μ	125						EN 12086
Temperatura limite di utilizzo	۰C	-40 / +110						
Reazione al fuoco	Euroclasse	F					EN 13501-1	
Calore specifico	J/kgK	1500						

TOLLERANZE DIMENSIONALI

Spessore (d)	mm	d < 50 50 ≤ d ≤ 60 d ≥ 60	-2/+2 -3/+3 -3/+5	EN 823 EN 13165	T2
Lunghezza e larghezza (L)	mm	L<1000 1000 ≤ L ≤ 2000	-5/+5 -7,5/+7,5	EN 13165	
Ortogonalità (Sb)	mm/m		5	EN 824 EN 13165	
Planarità (Smax) Lunghezza ≤ 2500 mm Area ≤ 0,75 m² Area > 0,75 m²			≤ 5 ≤ 10	EN 825 EN 13165	

I dati riportati nella presente tabella si riferiscono al pannello nudo, non accoppiato.

THERMAK info@thermak.it www.thermak.it

MATCO S.r.l. Via Quadrelli, 69 37055 Ronco all'Adige (VR) Tel. +39.045.6608111